

Effect of co-firing high percentages of secondary fuels on SCR deactivation

KEMA, the Netherlands

Leo Vredenbregt, Ronald Meijer

Independent International Organisation

Providing

Professional Services and Consultancy in the Field of Energy

EnvironmentQuality

ye.

Introduction

- Why research ?
 - Dutch situation: SCR and co-firing
- Research project
 - deactivation SCR by in-duct exposure
 - assessment deactivation by calculation
- Perspective

SCR and co-firing in the Netherlands

SCR and

- in 2010 5% of Dutch electricity has to be generated with the use of SF
- replacement of 12% (e/e) fossil fuels
- requiring 4 Mton of SF per year
- Coal covenant Government with Power Companies: CO₂reduction by replacement of coal by secondary fuels (SF)

- **Changes in emission legislation:**
 - Stricter emission limits (200 mg/m₀³ NO_x)
 - NO_x emission trading (start 2005)

NO_x-reduction with SCR is inevitable!

Effect of co-firing SF on SCR catalyst

Catalyst **Activity**

Need for research:

By order of Dutch Power Generation Companies

- E.ON Benelux Generation
- Electrabel Nederland
- Essent Energy Production
- Reliant Energy Power Generation Benelux
- co-funded by Novem (the Netherlands Agency for Energy and the Environment)

Project outline

Aim:

Assess the effect of co-firing SF conditions)

samples of SCR cata/

flue gas aring 1.5 year

- exposure at co-firing conditions (up to 20% mass)
- 4 catalyst manufacturers (confidential)
- determine activity changes, deposits on surface
- calculations (flue gas composition, economics co-firing on SCR

REMA Power Plant Maasvlakte (E.ON) Position sample holder

Conditions at catalyst sample holder:

Temperature: 325 - 370 °C

flue gas velocity: 5.5 m/s (actual wet, 350 °C)

sample ho

KEMA≼ Design sample holder

Catalyst sample holder:

capacity: 4x 16 samples

catalyst samples: 35x35x250 mm

Assess deactivation by calculation

Can we assess the risk of deactivation by calculating the flue gas composition at the position of the SCR?

- calculation with software tool FactSageTM
- comparison of situation with and without co-firing
- 4 different fuels: waste wood, RDF, poultry litter, MBM at 12,5 and 25% co-firing (e/e)
- find correlations between theory and practice

Calculation of flue gas composition

Short outline calculation with FactSage:

- 1 macro composition flue gas (1,400 °C, 3% O₂)
- 2 equilibrium calculations for temperature path: 1,400 - 200 °C
 - calculations for a power plant of 1,500 MW_{thermal}
 - assumption: solids, once formed, are inert

KEMA₹

7

Poison content SF compared to coal

Evaluatio

Focus on pote

- Alkali and e
- Phosphorus
- Arsenic (As
- Heavy meta

	RDF	MBM	Poultry L	Waste W
K		5x	12x	
Na	6x	18x		
Mg				
Р		82x	25x	
As				
Pb	20x			128x
Zn	13x	6x	18x	53x
Ca	7x	19x	12x	
CI	15x	17x	10x	

Is there any change compared to firing pure coal?

KEMA₹

-2

Coal, flue gas 900 °C, gaseous species on cooling

Summary flue gas calculations

The effect of co-firing on flue gas composition (350 °C):

- MBM & Poultry Litter: no phosphor increase in gas phase
- MBM, RDF & Poultry Litter: clear increase of sodium and potassium in gas phase

Summary calculations NaCl and KCl

Summary flue gas calculations

The effect of co-firing on flue gas composition (350 °C):

- MBM & Poultry Litter: no phosphor increase in gas phase
- MBM, RDF & Poultry Litter: clear increase of sodium and potassium in gas phase
- demolition wood: no Pb and Zn increase in gas phase but
 Pb-enrichment outer surface fly ash can be expected
- In general: no changes in Arsenic behavior
 - Indications of risks can be given
 - results from practice are necessary

Perspective Project

- Unique information about SCR catalyst deactivation
 - from long term exposure
 - at realistic conditions in a real power plant
 - exposed when co-firing high percentages of SF
- Results can immediately be used and contribute to a more reliable and cost effective SCR process operation

Perspective Project (2)

- Assess the risk of deactivation by calculation the flue gas composition is promising, next step is practical validation
- Project results are essential for a reliable cost evaluation
 - will be used in our SCR predictive tool

Thank you for your attention and ... see you soon for the latest results!

Feel free to contact us!

4400 Fair Lakes Court

Fairfax,

Virginia, 22033-3811

www.kema.com

www.kema-kps.com